Macdonald polynomials as characters of Cherednik algebra modules

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsymmetric Macdonald Polynomials and Demazure Characters

We establish a connection between a specialization of the nonsymmetric Macdonald polynomials and the Demazure characters of the corresponding affine Kac-Moody algebra. This allows us to obtain a representation-theoretical interpretation of the coefficients of the expansion of the specialized symmetric Macdonald polynomials in the basis formed by the irreducible characters of the associated fini...

متن کامل

On Cherednik–macdonald–mehta Identities

In this note we give a proof of Cherednik’s generalization of Macdonald–Mehta identities for the root system An−1, using representation theory of quantum groups. These identities give an explicit formula for the integral of a product of Macdonald polynomials with respect to a “difference analogue of the Gaussian measure”. They were suggested by Cherednik, who also gave a proof based on represen...

متن کامل

Projective modules in the category O for the Cherednik algebra

We study projective objects in the category OHc(0) of the Cherednik algebra introduced recently by Berest, Etingof and Ginzburg. We prove that it has enough projectives and that it is a highest weight category in the sense of Cline, Parshall and Scott, and therefore satisfies an analog of the BGG-reciprocity formula for a semisimple Lie algebra.

متن کامل

On the Connection Between Macdonald Polynomials and Demazure Characters

We show that the specialization of nonsymmetric Macdonald polynomials at t = 0 are, up to multiplication by a simple factor, characters of Demazure modules for ŝl(n). This connection furnishes Lie-theoretic proofs of the nonnegativity and monotonicity of Kostka polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2013

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-013-1257-3